Publications

Group members at the time the work was conducted are marked in bold.

Accepted

  1. Y. Wang, C. Y. Lai, D. Prior, C. Cowen-Breen, “Deep learning the flow law of Antarctic ice shelves,” Science, accepted.

  2. C. Y. Lai, P. Hassanzadeh, A. Sheshadri, M. Sonnewald, R. Ferrari, V. Balaji, “Machine learning for climate physics and simulations” invited review article in Annu. Rev. Condens. Matter Phys. (2025) arXiv.2404.13227 doi.org/10.1146/annurev-conmatphys-043024-114758

  3. J. Ng, Y. Wang, C. Y. Lai, “Spectrum-informed multistage neural network: Multiscale function approximator of machine precision,” ICML AI for Science Workshop (2024). doi.org/10.48550/arXiv.2407.17213

  4. C. Cowen-Breen, Y. Wang, S. Bates, C. Y. Lai, “Euler operators for mis-specified physics-informed neural networks,” ICML AI for Science Workshop (2024). openreview.net/pdf?id=kkGR5fNq2J

Under review

  1. J. Rines, C. Y. Lai, Y. Wang, “Theoretical analysis of stress perturbations from a partially-lubricated viscous gravity current” arXiv:2407.20565

  2. Y. Wang and C. Y. Lai, “DIFFICE-jax: Differentiable neural-network solver for data assimilation of ice shelves in JAX”

  3. A. Bradley, C. Y. Lai, N. B. Coffey, “Timescales of Antarctic ice shelf collapse via crevassing”

  4. K. Nissanka, N. Vora, J. M. Harper, J. C. Burton, J. M. Amundson, A. A. Robel, Y. Meng, C. Y. Lai, “Experimental investigations of ice mélange and the flow of floating granular materials”

Published

  1. Y. Meng, C. Y. Lai, R. Culberg, M. Shahin, L. Stearns, J. Burton, K. Nissanka, “Seasonal changes of mélange thickness coincide with Greenland calving dynamics,” Nature Communications, 16, 573 (2025). doi.org/10.1038/s41467-024-55241-7

  2. N. B. Coffey, C. Y. Lai, Y. Wang, W. R. Buck, T. Surawy-Stepney, A. E. Hogg, “Theoretical stability of ice shelf basal crevasses with a vertical temperature profile,” J. Glaciol., 1-22 (2024). doi.org/10.1017/jog.2024.52

  3. N. C. Shibley, C. Y. Lai, R. Culberg, “How to infer ocean freezing rates on icy satellites from measurements of ice thickness,” Mon. Not. R. Astron. Soc., 535, 290–298 (2024). doi.org/10.1093/mnras/stae2304

  4. A. Voigtländer, M. Houssais, K. A. Bacik, I. C. Bourg, J. C. Burton, K. E. Daniels, S. S. Datta, E. Del Gado, N. S. Deshpande, O. Devauchelle, B. Ferdowsi, R. Glade, L. Goehring, I. J. Hewitt, D. Jerolmack, R. Juanes, A. Kudrolli, C. Y. Lai, W. Li, C. Masteller, K. Nissanka, A. M. Rubin, H. A. Stone, J. Suckale, N. M. Vriend, J. S. Wettlaufer, J. Q. Yang, “Soft matter physics of the ground beneath our feet,” Soft Matter, 20, 5859-5888 (2024). doi.org/10.1039/D4SM00391H

  5. Y. Meng*, R. Culberg*, C. Y. Lai, “Vulnerability of firn to hydrofracture: Poromechanics modeling,” J. Glaciol., 1–14 (2024). doi:10.1017/jog.2024.47
    *Equally Contributed

  6. L. A. Stevens, S. B. Das, M. D. Behn, J. J. McGuire, C. Y. Lai, I. Joughin, S. Larochelle, M. Nettles, “Elastic stress coupling between supraglacial lakes,” J. Geophys. Res. Earth Surf., 129, e2023JF007481 (2024). doi.org/10.1029/2023JF007481

  7. Y. Wang and C. Y. Lai, “Multi-stage neural networks: Function approximator of machine precision,” J. Comput. Phys., 504, 112865 (2024). doi.org/10.1016/j.jcp.2024.112865

  8. R. Eusebi, G. A. Vecchi, C. Y. Lai, M. Tong, “Realistic tropical cyclone wind and pressure fields can be reconstructed from sparse data using deep learning,” Commun. Earth Environ., 5, 8 (2024). doi.org/10.1038/s43247-023-01144-2

  9. Y. Iwasaki and C. Y. Lai, “1D ice shelf hardness inversion: Clustering behavior and collocation resampling in physics-informed neural networks,” J. Comput. Phys., 492, 112435 (2023). doi:10.1016/j.jcp.2023.112435

  10. Y. Wang, C. Y. Lai, J. Gomez-Serrano, T. Buckmaster, “Asymptotic self-similar blow-up profile for three-dimensional axisymmetric Euler equations using neural networks," Phys. Rev. Lett., 130, 244002 (2023). doi:10.1103/PhysRevLett.130.244002

  11. J. Lockwood, N. Lin, M. Oppenheimer, C. Y. Lai, “Using neural networks to predict hurricane storm surge and to assess the sensitivity of surge to storm characteristics," J. Geophys. Res. Atmospheres, 127, e2022JD037617 (2022). doi:10.1029/2022JD037617

  12. N. Coffey, D. R. MacAyeal, L. Copland, D. Mueller, O. V. Sergienko, A. F. Banwell, C. Y. Lai, “Enigmatic surface rolls of the Ellesmere Ice Shelf,” J. Glaciol., 1–12 (2022). doi:10.1017/jog.2022.3

  13. D. L. Chase, C. Y. Lai, H. A. Stone, “Relaxation of a fluid-filled blister on a porous substrate,” Phys. Rev. Fluids, 6, 084101 (2021). doi:10.1103/PhysRevFluids.6.084101 (Editors’ Suggestion)

  14. [PDF] C. Y. Lai, L. A. Stevens, D. L. Chase, T. T. Creyts, M. D. Behn, S. B. Das, H. A. Stone, “Hydraulic transmissivity inferred from ice-sheet relaxation following Greenland supraglacial lake drainages," Nature Communications, 12, 3955 (2021). doi:10.1038/s41467-021-24186-6

  15. [PDF] W. R. Buck and C. Y. Lai, “Flexural control of basal crevasse opening under ice shelves," Geophys. Res. Lett., 48, e2021GL093110 (2021). doi: 10.1029/2021GL093110

  16. S. Shim, S. Khodaparast, C. Y. Lai, J. Yan, J. T. Ault, B. Rallabandi, O. Shardt, H. A. Stone, “CO2-driven diffusiophoresis for maintaining a bacteria-free surface," Soft matter, 17, 2568–2576 (2021). doi:10.1039/D0SM02023K

  17. [PDF] C. Y. Lai, J. Kingslake, M. Wearing, P.-H. Cameron Chen, P. Gentine, H. Li, J. Spergel, J. M. van Wessem, “Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture," Nature, 584, 574–578 (2020). doi: 10.1038/s41586-020-2627-8  

  18. [PDF] C. Y. Lai, J. Eggers, and L. Deike, “Bubble bursting: universal cavity and jet profiles," Phys. Rev. Lett., 121, 144501 (2018). doi: 10.1103/PhysRevLett.121.144501

  19. [PDF] C. Y. Lai, B. Rallabandi, A. Perazzo, Z. Zheng, S. Smiddy, and H. A. Stone “Foam-driven fracture," Proc. Natl. Acad. Sci., 201808068 (2018). doi: 10.1073/pnas.1808068115

  20. [PDF] H. S. Rabbani, D. Or, Y. Liu, C. Y. Lai, N. Lu, S. S. Datta, H. A. Stone, and N. Shokri, “Suppressing viscous fingering in structured porous media,” Proc. Natl. Acad. Sci., 201800729 (2018). doi: 10.1073/pnas.1800729115

  21. [PDF] C. Y. Lai, Z. Zheng, E. Dressaire, G. Ramon, H. E. Huppert, H. A. Stone, “Elastic relaxation of fluid-driven cracks and the resulting backflow," Phys. Rev. Lett., 117, 268001 (2016). doi: 10.1103/PhysRevLett.117.268001

  22. [PDF] C. Y. Lai, Z. Zheng, E. Dressaire, H. A. Stone, “Fluid-driven crack in an elastic matrix in the toughness-dominated limit," Philos. Trans. R. Soc. A, 374, 20150425 (2016). doi: 10.1098/rsta.2015.0425  

  23. [PDF] C. Y. Lai, Z. Zheng, E. Dressaire, J. Wexler, H. A. Stone, “Experimental study on penny-shaped fluid-driven cracks in an elastic matrix," Proc. R. Soc. A, 471, 20150255 (2015). doi: 10.1098/rspa.2015.0255

  24. [PDF] J. C. Tsai, C. Y. Tao, Y. C. Sun, C. Y. Lai, K. H. Huang, W. T. Juan, and J. R. Huang, “Vortex-induced morphology on a two-fluid interface and the transitions," Phys. Rev. E, 92, 031002(R) (2015). doi: 10.1103/Phys-RevE.92.031002

Policy-related

  1. [PDF] G. Davies*, R. Edwards*, C. Y. Lai*, B. Perry*, and K. Spokas*, “Institutional Emissions and Energy Planning: Understanding the interactions between carbon accounting, institutional goal setting, and energy procurement," published by the Princeton Environmental Institute at Princeton University (2019).

*Equally Contributed