Publications

Group members at the time the work was conducted are marked in bold.

Accepted

  1. Y. Meng, C. Y. Lai, R. Culberg, M. Shahin, L. Stearns, J. Burton, K. Nissanka, “Seasonal changes of mélange thickness coincide with Greenland calving dynamics,” Nature Communications (2024)

  2. J. Ng, Y. Wang, C. Y. Lai, “Spectrum-informed multistage neural network: Multiscale function approximator of machine precision,” ICML AI for Science Workshop (2024). doi.org/10.48550/arXiv.2407.17213

  3. C. Cowen-Breen, Y. Wang, S. Bates, C. Y. Lai, “Euler operators for mis-specified physics-informed neural networks,” ICML AI for Science Workshop (2024). openreview.net/pdf?id=kkGR5fNq2J

  4. N. B. Coffey, C. Y. Lai, Y. Wang, W. R. Buck, T. Surawy-Stepney, A. E. Hogg, “Theoretical stability of ice shelf basal crevasses with a vertical temperature profile,” J. Glaciol., 1-22 (2024). doi.org/10.1017/jog.2024.52

Under review

  1. J. Rines, C. Y. Lai, Y. Wang, “Theoretical analysis of stress perturbations from a partially-lubricated viscous gravity current” arXiv:2407.20565

  2. Y. Wang and C. Y. Lai, “DIFFICE-jax: Differentiable neural-network solver for data assimilation of ice shelves in JAX”

  3. C. Y. Lai, P. Hassanzadeh, A. Sheshadri, M. Sonnewald, R. Ferrari, V. Balaji, “Machine learning for climate physics and simulations” invited review article in Annu. Rev. Condens. Matter Phys. arXiv.2404.13227

  4. Y. Wang, C. Y. Lai, D. Prior, C. Cowen-Breen, “Deep learning the flow law of Antarctic ice shelves” doi.org/10.21203/rs.3.rs-2135795/v1

  5. A. Bradley, C. Y. Lai, N. B. Coffey, “Timescales of Antarctic ice shelf collapse via crevassing”

  6. K. Nissanka, N. Vora, J. M. Harper, J. C. Burton, J. M. Amundson, A. A. Robel, Y. Meng, C. Y. Lai, “Experimental investigations of ice mélange and the flow of floating granular materials”

Published

  1. N. C. Shibley, C. Y. Lai, R. Culberg, “How to infer ocean freezing rates on icy satellites from measurements of ice thickness,” Mon. Not. R. Astron. Soc., 535, 290–298 (2024). doi.org/10.1093/mnras/stae2304

  2. A. Voigtländer, M. Houssais, K. A. Bacik, I. C. Bourg, J. C. Burton, K. E. Daniels, S. S. Datta, E. Del Gado, N. S. Deshpande, O. Devauchelle, B. Ferdowsi, R. Glade, L. Goehring, I. J. Hewitt, D. Jerolmack, R. Juanes, A. Kudrolli, C. Y. Lai, W. Li, C. Masteller, K. Nissanka, A. M. Rubin, H. A. Stone, J. Suckale, N. M. Vriend, J. S. Wettlaufer, J. Q. Yang, “Soft matter physics of the ground beneath our feet,” Soft Matter, 20, 5859-5888 (2024). doi.org/10.1039/D4SM00391H

  3. Y. Meng*, R. Culberg*, C. Y. Lai, “Vulnerability of firn to hydrofracture: Poromechanics modeling,” J. Glaciol., 1–14 (2024). doi:10.1017/jog.2024.47
    *Equally Contributed

  4. Y. Wang and C. Y. Lai, “Multi-stage neural networks: Function approximator of machine precision,” J. Comput. Phys., 504, 112865 (2024). doi.org/10.1016/j.jcp.2024.112865

  5. L. A. Stevens, S. B. Das, M. D. Behn, J. J. McGuire, C. Y. Lai, I. Joughin, S. Larochelle, M. Nettles, “Elastic stress coupling between supraglacial lakes,” J. Geophys. Res. Earth Surf., 129, e2023JF007481 (2024). doi.org/10.1029/2023JF007481

  6. R. Eusebi, G. A. Vecchi, C. Y. Lai, M. Tong, “Realistic tropical cyclone wind and pressure fields can be reconstructed from sparse data using deep learning,” Commun. Earth Environ., 5, 8 (2024). doi.org/10.1038/s43247-023-01144-2

  7. Y. Iwasaki and C. Y. Lai, “1D ice shelf hardness inversion: Clustering behavior and collocation resampling in physics-informed neural networks,” J. Comput. Phys., 492, 112435 (2023). doi:10.1016/j.jcp.2023.112435

  8. Y. Wang, C. Y. Lai, J. Gomez-Serrano, T. Buckmaster, “Asymptotic self-similar blow-up profile for three-dimensional axisymmetric Euler equations using neural networks," Phys. Rev. Lett., 130, 244002 (2023). doi:10.1103/PhysRevLett.130.244002

  9. J. Lockwood, N. Lin, M. Oppenheimer, C. Y. Lai, “Using neural networks to predict hurricane storm surge and to assess the sensitivity of surge to storm characteristics," J. Geophys. Res. Atmospheres, 127, e2022JD037617 (2022). doi:10.1029/2022JD037617

  10. N. Coffey, D. R. MacAyeal, L. Copland, D. Mueller, O. V. Sergienko, A. F. Banwell, C. Y. Lai, “Enigmatic surface rolls of the Ellesmere Ice Shelf,” J. Glaciol., 1–12 (2022). doi:10.1017/jog.2022.3

  11. D. L. Chase, C. Y. Lai, H. A. Stone, “Relaxation of a fluid-filled blister on a porous substrate,” Phys. Rev. Fluids, 6, 084101 (2021). doi:10.1103/PhysRevFluids.6.084101 (Editors’ Suggestion)

  12. [PDF] C. Y. Lai, L. A. Stevens, D. L. Chase, T. T. Creyts, M. D. Behn, S. B. Das, H. A. Stone, “Hydraulic transmissivity inferred from ice-sheet relaxation following Greenland supraglacial lake drainages," Nature Communications, 12, 3955 (2021). doi:10.1038/s41467-021-24186-6

  13. [PDF] W. R. Buck and C. Y. Lai, “Flexural control of basal crevasse opening under ice shelves," Geophys. Res. Lett., 48, e2021GL093110 (2021). doi: 10.1029/2021GL093110

  14. S. Shim, S. Khodaparast, C. Y. Lai, J. Yan, J. T. Ault, B. Rallabandi, O. Shardt, H. A. Stone, “CO2-driven diffusiophoresis for maintaining a bacteria-free surface," Soft matter, 17, 2568–2576 (2021). doi:10.1039/D0SM02023K

  15. [PDF] C. Y. Lai, J. Kingslake, M. Wearing, P.-H. Cameron Chen, P. Gentine, H. Li, J. Spergel, J. M. van Wessem, “Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture," Nature, 584, 574–578 (2020). doi: 10.1038/s41586-020-2627-8  

  16. [PDF] C. Y. Lai, J. Eggers, and L. Deike, “Bubble bursting: universal cavity and jet profiles," Phys. Rev. Lett., 121, 144501 (2018). doi: 10.1103/PhysRevLett.121.144501

  17. [PDF] C. Y. Lai, B. Rallabandi, A. Perazzo, Z. Zheng, S. Smiddy, and H. A. Stone “Foam-driven fracture," Proc. Natl. Acad. Sci., 201808068 (2018). doi: 10.1073/pnas.1808068115

  18. [PDF] H. S. Rabbani, D. Or, Y. Liu, C. Y. Lai, N. Lu, S. S. Datta, H. A. Stone, and N. Shokri, “Suppressing viscous fingering in structured porous media,” Proc. Natl. Acad. Sci., 201800729 (2018). doi: 10.1073/pnas.1800729115

  19. [PDF] C. Y. Lai, Z. Zheng, E. Dressaire, G. Ramon, H. E. Huppert, H. A. Stone, “Elastic relaxation of fluid-driven cracks and the resulting backflow," Phys. Rev. Lett., 117, 268001 (2016). doi: 10.1103/PhysRevLett.117.268001

  20. [PDF] C. Y. Lai, Z. Zheng, E. Dressaire, H. A. Stone, “Fluid-driven crack in an elastic matrix in the toughness-dominated limit," Philos. Trans. R. Soc. A, 374, 20150425 (2016). doi: 10.1098/rsta.2015.0425  

  21. [PDF] C. Y. Lai, Z. Zheng, E. Dressaire, J. Wexler, H. A. Stone, “Experimental study on penny-shaped fluid-driven cracks in an elastic matrix," Proc. R. Soc. A, 471, 20150255 (2015). doi: 10.1098/rspa.2015.0255

  22. [PDF] J. C. Tsai, C. Y. Tao, Y. C. Sun, C. Y. Lai, K. H. Huang, W. T. Juan, and J. R. Huang, “Vortex-induced morphology on a two-fluid interface and the transitions," Phys. Rev. E, 92, 031002(R) (2015). doi: 10.1103/Phys-RevE.92.031002

Policy-related

  1. [PDF] G. Davies*, R. Edwards*, C. Y. Lai*, B. Perry*, and K. Spokas*, “Institutional Emissions and Energy Planning: Understanding the interactions between carbon accounting, institutional goal setting, and energy procurement," published by the Princeton Environmental Institute at Princeton University (2019).

*Equally Contributed