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After a bubble bursts at a liquid surface, the collapse of the cavity generates capillary waves, which focus
on the axis of symmetry to produce a jet. The cavity and jet dynamics are primarily controlled by a
nondimensional number that compares capillary inertia and viscous forces, i.e., the Laplace number
La ¼ ργR0=μ2, where ρ, μ, γ, and R0 are the liquid density, viscosity, interfacial tension, and the initial
bubble radius, respectively. In this Letter, we show that the time-dependent profiles of cavity collapse
(t < t0) and jet formation (t > t0) both obey a jt − t0j2=3 inviscid scaling, which results from a balance
between surface tension and inertia forces. Moreover, we present a scaling law, valid above a critical
Laplace number, which reconciles the time-dependent scaling with the recent scaling theory that links the
Laplace number to the final jet velocity and ejected droplet size. This leads to a self-similar formula which
describes the history of the jetting process, from cavity collapse to droplet formation.
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Bubbles bursting is ubiquitous in everyday life and is
important for the climate, owing to the exchange of gas,
water, heat, and chemical species between ocean and
atmosphere [1–7]. After a bubble bursts, a jet forms and
liquid drops detached from the jet are emitted to the
atmosphere. The aerosol of drops (size ranges from 1 to
100 μm), which stays in the atmosphere is crucial since it
regulates atmospheric chemistry [8], threatens human
health by sending marine biotoxins and viruses to the
atmosphere [9–11] and affects Earth’s radiation balance,
cloud and ice crystals formation, and precipitation
[7,12–15]. Due to the broad impact across a range of
research fields, the dynamics of bubble bursting has been
an active area of research for the past 60 years.
Much recent progress was made linking jet dynamics

with the physical properties of the liquid. Ghabache et al.
[16,17] developed scaling laws for the jet velocity as a
function of the size of the jet drop, the liquid properties and
the initial size of the mother bubble. A set of scaling laws
for the jet velocity, as well as the radial and axial length of
the, jet as a function of the liquid properties, have been
developed using a force and energy argument [18]. The
effects of gravity were investigated theoretically [19]. The
effect of gravity on jet velocity and the critical conditions
for ejection of jet drops were examined numerically by
Deike et al. [20].
Zeff et al. [21] showed that a liquid-water interface,

before a surface wave collapses at time t0, is self-similar
and obeys a ðt0 − tÞ2=3 inertial-capillary scaling law, which
has been shown to apply to cavity collapse [16,22] and jet
formation near a critical Laplace number[23]. However, the
existing ðt0 − tÞ2=3 scaling laws only describe the bursting

dynamics for a given set of fluid properties. The connection
between the time-dependent self-similar scaling and a
global scaling that involves fluid properties (e.g., the
Ganan-Calvo scaling [18]) has not been addressed. Here,
we present a universal scaling law for the dynamics of both
cavity collapse (t < t0) and jet formation (t > t0), which
incorporates both the time-dependent 2=3 scaling law and
the Ganan-Calvo scaling [18] to describe the liquid-gas
interface as a function of time t, liquid properties (viscosity
μ, interfacial tension γ, and density ρ), and the initial bubble
radius R0.
We simulate numerically the dynamics of bubbles

bursting using the open source solver Gerris with an
adaptive mesh [24,25], which has yielded excellent agree-
ment with experimental results [20,23]. We assume an
axisymmetric system and solve the full two-phase Navier-
Stokes equation. The relevant dimensionless numbers are
the Bond number [Bo≡ ρgR2

0=γ (relative importance of
gravitational forces compared to surface tension forces)] and
the Laplace number (La≡ ργR0=μ2 ¼ 1=Oh2 [20] [relative
importance of surface tension forces to viscous forces]),
where Oh is the Ohnesorge number. The initial static bubble
shape depends only on Bo, and is computed by solving the
Young-Laplace equations [26]. The time evolution of the
liquid-gas interface hðr; tÞ for La ¼ 2000 and Bo ¼ 10−3,
solved with a grid size up to 40962 and 819 grid points
across the bubble diameter, is plotted in Fig. 1(a).
After a bubble bursts, capillary waves travel along the

interface towards the bottom of the bubble cavity. A jet is
formed when the capillary waves collapse and the curvature
of the interface reverses at a time t0. For La ≥ La� ≈ 500
[20,27], a jet drop detaches from the top of the jet at td after
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the jet grows to a certain length. For La < La� no drops
detach from the liquid jet. The cavity profiles near the
curvature reversal [dashed window in Fig. 1(a)] right before
the jet forms at t0 is plotted in Fig. 1(b). The time difference

between the curves is δt=τ ¼ 0.0003, where τ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR3

0=γ
q

is the inertio-capillary timescale. As time approaches t0, the
interface steepens and snaps, entraps a bubble and forms a
jet at t0. The lowest position of the profile at t0 is located at
h ¼ h0 and r ¼ 0. In this Letter, we focus on the cases
where Bo ¼ 10−3 (which corresponds to a bubble of radius
85 μm in water) so that the effects from gravity are
negligible. Note that the jet velocity for Bo ¼ 10−3 and
10−2 are the same [20] and converge to the asymptotic limit
where Bo ¼ 0.
Assuming that during the curvature reversal the inertial

forces are of the same orders of magnitude as the surface
tension forces and the viscous forces, and that the initial
surface energy of the bubbles supplies the viscous dis-
sipation in the capillary waves and the kinetic energy in the
jet formation, Ganan-Calvo obtained relationships involv-
ing the dimensionless parameter φ≡ ffiffiffiffiffiffi

La
p ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

La=La�
p

− 1Þ
[18]. For a jet near curvature reversal with a typical vertical
speed V, radial speed V 0, radial length scale R, and vertical
length scale L,

V=Vμ ¼ kvφ−3=4; ð1Þ

V 0=Vμ ¼ kv0φ−1=2; ð2Þ

R=lμ ¼ kdφ5=4; ð3Þ

L=lμ ¼ klφ; ð4Þ

where Vμ ≡ γ=μ and lμ ≡ μ2=ργ. For different La and
Bo ¼ 10−3, we obtain numerically the drop radius Rd, the
length of the jet Ld [defined in Fig. 2(a)] and the velocity of
the drop Vd when a jet drop detaches at td. The numerical
and experimental results of drop velocity Vd and radius Rd
have been shown to agree well with Eqs. (1) and (3),
respectively, with fitted prefactors kv ≈ 16 and kd ≈ 0.6
[18,20]. For Eq. (4), we choose the length of the jet Ld at td
to be the axial length scale L and obtain good agreement
between the numerical result and the scaling law with a
numerical prefactor kl ≈ 50, as shown in Fig. 2(a) by the
solid line.
A typical timescale for jet formation can be quantified

using the time difference between the jet formation t0 and
drop ejection td, i.e., td − t0. A natural timescale for the
flow in the axial direction, using Eqs. (1) and (4), is
L=V ∼ φ7=4. Therefore, we obtain a scaling relation for the
axial timescale td − t0,

ðtd − t0Þ
lμ=Vμ

¼ ktφ7=4; ð5Þ

FIG. 2. Comparison between the numerical result (dots) and the
scaling arguments (solid line) in Eqs. (4) and (5). When the jet
drop detaches from the jet at t ¼ td, the length of the jet and the
radius of the jet drop are denoted Ld and Rd, respectively. (a) The
numerical results show that the jet length Ld ∝ φ obeys Eq. (4)
with a fitted prefactor kl ≈ 50 (solid line). (b) The timescale
td − t0, during which the jet forms and produces a jet drop, agrees
well with the solid line ðtd − t0Þ ∝ φ7=4 [Eq. (5) with fitted
prefactor kt ≈ 2].

FIG. 1. The time evolution of the liquid-gas interface of a
bursting bubble of initial radius R0 at La ¼ 2000 and Bo ¼ 10−3.
The color bar indicates the time corresponding to different
profiles. (a) The formation of a jet after the collapse of capillary
waves. The time difference between the curves is δt=τ ¼ 0.038,
where τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR3

0=γ
p

is the inertio-capillary timescale. The time
when a jet ejects a drop is td. (b) The interface profiles right
before a bubble is entrained. The time difference between the
curves is δt=τ ¼ 0.0003. As the front of the capillary wave
approaches r ¼ 0 the interface steepens, snaps, entrains a bubble,
and forms a jet at t ¼ t0. The bottom location of the bubble at the
entrapment is denoted with h0.
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which is in excellent agreement with our numerical results.
Eq. (5) fitted to the numerical results (kt ≈ 2) is shown by
the solid line in Fig. 2(b). This discussion confirms the
robustness of Ganan-Calvo’s scaling law [18] to character-
ize the jet variables at drop detachment.
Now, we include the time-dependent dynamics in the

scaling arguments [Eqs. (1)–(5)]. The free surface of the
liquid-air interface [z ¼ hðr; tÞ] prior to cavity collapse
(t ¼ t0), assuming the flows are incompressible and irrota-
tional, has been shown numerically and experimentally to
be self-similar,

hðr; tÞ ¼ ðt0 − tÞ2=3f(rðt0 − tÞ−2=3); ð6Þ

where f is a function of the shape of the surface profile.
Below we show that Eq. (6) not only applies to cavity
collapse but also to the formation of the liquid jet for a wide
range of La.
First, we combine the time-dependent scaling [Eq. (6)]

with Eqs. (4) and (5), which includes the dependence of jet
profiles hðr; tÞ on liquid properties (μ, γ, ρ). In Fig. 2 we
show that the axial length scale L of the jet scales like lμφ

and the axial timescale of the jet ðtd − t0Þ ≈ φ7=4lμ=Vμ.
Therefore, length and time in Eq. (6) can be rescaled using
the characteristic length scale lμφ and timescale
tj ≡ φ7=4lμ=Vμ, respectively. Therefore the dimensionless
interface profiles during jet formation (t > t0) can be
written as

h − hb
lμφ

¼
�
t − t0
tj

�
2=3

ga

�
r

lμφ

�
t − t0
tj

�
−2=3

�
; ð7Þ

in which ga is the dimensionless shape of the profile after
the curvature reversal and hb is the bottom location of the
jet. To test Eq. (7) we plot the jet profiles for a range of
Laplace number (La ¼ 1000–50 000) at times t − t0 ¼
tj; 3=2tj; 2tj; 5=2tj in Fig. 3(a). After nondimensionalizing
Fig. 3(a) using Eq. (7), the dimensionless jet profiles for
different parameters La and different times collapse except
for a region near the rounded tip, as shown by Fig. 3(b).
Very close to the curvature reversal time during ðt − t0Þ <
tj the profiles fail to collapse, since the jet is comprised
mostly by its rounded tip. We note that the size of the
rounded tip of the jet does not vary much with time and is
roughly the same size as the jet drop Rd, and thus scales as
R ≈ lμφ

5=4 [Eq. (3)]. While the size of the rounded tip and
the jet drop are set by the radial length scale R at t ¼ t0, at
long times, the radius of the jet body scales the same way as
the axial jet length L ≈ lμφ, as predicted by Eq. (6).
On the other hand, before the cavity collapses (t < t0),

capillary waves travel in the radial direction with a
characteristic velocity V 0 [Eq. (2)]. The timescale for the
capillary wave to reach the center, according to Eqs. (2) and
(4), can be estimated as L=V 0 ≈ φ3=2lμ=Vμ. Therefore we

define a characteristic time for the traveling capillary
wave as tc ≡ φ3=2lμ=Vμ. The cavity profiles at La ¼
1000–20 000 and t0 − t ¼ 6tc; 8tc; 10tc are plotted in
Fig. 4(b). For La ¼ 1000–2000 only one capillary wave
travels on the free surface, while for La ≥ 5000 multiple
capillary waves are observed. Since the length scale of the
capillary wave near the curvature reversal is set by the
Ganan-Calvo length scale L ≈ lμφ [Eq. (4)], we non-
dimensionalize the ðt0 − tÞ2=3 self-similar cavity profiles
[Eq. (6)] with the characteristic length scale lμφ and radial
timescale tc of the capillary waves.
We propose that the dimensionless cavity profiles

(t < t0) right before the capillary waves collapse obey

h − h0
lμφ

¼
�
t0 − t
tc

�
2=3

gb

�
r

lμφ

�
t0 − t
tc

�
−2=3

�
; ð8Þ

FIG. 3. (a) The time evolution of the liquid-gas interface during
jet formation (t>t0) for La ¼ 1000, 1500,2000,5000,20 000,
50 000 at times t−t0¼tj;3=2tj;2tj;5=2tj, where tj≡φ7=4lμ=Vμ

is the characteristic time of jet formation. (b) The dimensionless jet
profiles rescaled using Eq. (7). The profiles are shifted in the axial
direction with respect to the bottom of the jet hb. The dimension-
less profiles for different times and La ¼ 5000–50 000 collapse,
except for the region of the rounded tip. When La ≤ 2000 (i.e.,
φ ≤ 45) the timescale tj used here deviates slightly from the jet
lifetime td − t0 [see Fig. 2(b)], and therefore affects the collapse of
the jet onto the universal profile.
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where gb is the dimensionless shape of the profile before
the curvature reversal and h0 [defined in Fig. 2(a)] is the
location of the bottom of the bubble, also the location at
which the capillary wave approaches at t0. The cavity
profiles in Fig. 4(a) rescaled using the universal self-similar
scaling [Eq. (8)] collapse for different La and a period
of time (6tc ≤ t0 − t ≤ 10tc) near t ¼ t0, as shown in
Fig. 4(b). At La ≥ 20 000, multiple capillary waves appear
and Eq. (8) fails to collapse the profiles. During t0 − t <
6tc the time is too close to the moment of curvature
reversal, and the profiles deviate from the universal shape
due to bubble pinch-off.
The differences between the dimensionless profiles for

cavity collapse [Eq. (8), where t < t0] and jet formation
[Eq. (7), where t > t0] are the choice of the timescale.
Therefore, we can rewrite both dimensionless profiles,
Eqs. (8) and (7), as

HðR; T Þ ¼ T 2=3ga;bðRT −2=3Þ ð9Þ

whereR≡ r=ðlμφÞ is the dimensionless width. For cavity
collapse the dimensionless length and time are H≡
½hðr; tÞ − h0�=ðlμφÞ and T ≡ ðt0 − tÞ=tc, respectively,
where tc ≡ lμφ

3=2=Vμ is the timescale of the traveling
capillary wave. For jet formation, H≡ ½hðr; tÞ − hb�=
ðlμφÞ and T ≡ ðt − t0Þ=tj, where tj ≡ lμφ

7=4=Vμ is the
timescale of jet formation. The parameters that were
found numerically are the bottom position hbðtÞ of the
jet, the bottom position h0 of the bubble, the time t0 when
the curvature reverses, and the critical La for ejection of
jet drops La�. Eq. (9) agrees well with the dynamics of
both cavity collapse (Fig. 3) and jet formation (Fig. 4)
and connects the dynamics with time t, liquid properties
(μ, γ, ρ), and initial bubble radius R0.
The dynamics of the free surface away from the bubble

entrapment time t0 obeys the jt − t0j2=3 scaling for inviscid,
incompressible, and irrotational flows. In our numerical
simulation, we estimate the forces in the Navier-Stokes
equation and find that at times, far away from t0, the
viscous forces are small compared with the inertia and
surface tension forces. At t0 the viscous forces reach the
same order of magnitude as the inertia and surface tension
forces, in regions near high interface curvature. The effects
of viscosity come into play during the curvature reversal at
t0, which set the length and velocity scales [Eqs. (1)–(4)] of
the flows. Therefore, Eq. (9) successfully collapses the
interface profiles for both t < t0 and t > t0 at different
times and across a range of La.
In conclusion, we study the self-similar dynamics of a

bursting bubble. We report the power-law dependence of
the jet length and the timescale of the jet formation on the
dimensionless parameter φ. The jet length Ld at the
moment when a jet drop detaches is proportional to φ,
agreeing well with Ganan-Calvo’s scaling. The time from
jet formation to drop detachment obeys td − t0 ∝ φ7=4.
Using proper length and timescales, we propose a scaling
law to describe the dynamics of both cavity collapse and
jet formation as a function of time, liquid properties, and
the initial bubble size. We show that for a certain range of
time and Laplace number, the dimensionless interfacial
profiles collapse, exhibiting self-similar dynamics and
good agreement with the universal scaling law.
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